Ergodic Theory - Week 6

Course Instructor: Florian K. Richter Teaching assistant: Konstantinos Tsinas

1 Classifying measure preserving systems

- **P1.** Prove that the systems $\mathbb{X} = (\mathbb{T}, \mathcal{B}(\mathbb{T}), m_{\mathbb{T}}, R_{\alpha})$ and $\mathbb{Y} = (\mathbb{T}, \mathcal{B}(\mathbb{T}), m_{\mathbb{T}}, T_2)$ are not isomorphic, where $R_{\alpha}x = x + \alpha \pmod{1}$ and $T_2x = 2x \pmod{1}$.
- **P2.** Let $\{\alpha_n\}_{n\in\mathbb{N}}\subseteq\mathbb{T}$. Show that there is an increasing sequence $(n_k)_{k\in\mathbb{N}}\subseteq\mathbb{N}$ such that for every $k\in\mathbb{N}$,

$$||n_k \alpha_l||_{\mathbb{T}} \le \frac{1}{k}, \quad \forall l \in \{1, \dots, k\}.$$

Hint: Use Poincaré's Theorem in a convenient group rotation.

- **P3.** Prove that the systems $\mathbb{X} = (\mathbb{T}, \mathcal{B}(\mathbb{T}), m_{\mathbb{T}}, T_4)$ and $\mathbb{Y} = (\mathbb{T}^2, \mathcal{B}(\mathbb{T}^2), m_{\mathbb{T}^2}, T_2 \times T_2)$ are isomorphic.
- **P4.** Let (X, \mathcal{B}, μ, T) be an ergodic measure-preserving system and let A be a set of positive measure. The pointwise ergodic theorem shows that for almost all $x \in X$, the set of visiting times

$$\Lambda_x = \{ n \in \mathbb{N} \colon T^n x \in A \}$$

has natural density equal to $\mu(A)$. Is it true that, for almost all $x \in X$, the set Λ_x has bounded gaps?